
SOME THINK:

Zain Mobarik
CS Coursework

AQA A-LEVEL CS COURSEWORK:
ANCIENT COMBAT

Dr. Challoner’s Grammar School

Candidate Number - 7233

Teacher - Mr Keen

Centre Number - 55205

Contents

1. Introduction……………………………………………………….……. 2 - 4

- Preface
- Purpose
- Key
- Success Criteria

2. Analysis……………………………………………………………………… 5 - 8
- Feedback from end users

- System setup
- In-game technicalities
- Sprite selection
- Game window
- Stylistic feedback

- Class Diagrams

3. Implementation………………………………………………………… 9 - 33
- Code 1

- Code 1: Issue solved
- Code 2

- Code 2: Implementation of the ESC button to exit the game

- Code 3
- Code 3: Implementation of frame rate to begin preparation for

animation
- Code 4

- Code 4: Introducing classes and encapsulation
- Code 5

- Code 5: Getting the first few screens to run
- Code 5: Getting the first few screens to run (2)
- Code 5: Getting the first few screens to run (3)

- Code 6
- Code 6: Condensing and making code more efficient
- Code 6: Condensing and making code more efficient (2)
- Code 6: Condensing and making code more efficient (3)

- Code 7
- Code 7: Working on the Menu page buttons
- Code 7: Working on the button change for the Settings page

- Code 8
- Code 8: Animating Tizoc’s movement
- Code 8: Animating Tizoc’s movement (Jumping)

4. Test Table……………………………………………………….……… 34 - 39

1

Introduction

PREFACE

I had spent a long time looking for a project that would click with me and be on a level I could comprehend.

I had different projects in mind but most of them weren't as exciting for me. For example, I looked into

making a school facility hiring system and an employee timetable database as well as various other

projects. But this project was more to my liking because I was intrigued by the idea of making something

my fellow peers and I could actually use for ourselves. Furthermore, this project was just the right difficulty

for me - I could understand all the code yet, it was still a challenge to reach the end. This is why I chose to

make this Street Fighter type game called, “Ancient Combat”.

PURPOSE

Since my early gaming days on my Nintendo DS and PlayStation 2, I have always enjoyed tough, fighting

games with super complicated special moves and awesome attacking combinations. When it comes to

creating a game, it’s almost like a piece of art - you put a bit of yourself into it. It’s this visualisation of my

ideas - the fact that the thoughts in my head can become a real, working game is what enthralled me to just

go for it and really make this my game. Therefore, the purpose of this project is to sharpen my skills and

use them to make my plan come to life in a game that represents me and is a part of me which others can

enjoy.

KEY

(A1) ​= Any errors or issues I had in my code. I link this using the same key under the “Test Table” section

(B1) ​= Any changes I made to my code due to a design change. This could either be from feedback from an

end-user or from my own research. I link thus using the same key under the “Analysis” section

Bold Words​ = Any word or phrase in bold is a direct quote from my code. I purposefully do not quote my

code using speech marks (“”) because it might confuse the reader that the part of my code that I quoted is

a string value not

[1]​ = An indication of the image number of my screenshots. This is so I can easily refer to a screenshot

when I am talking about it in my implementation.

Blue Text ​= Any attributes on my class diagram that I added as I was coding the project that weren't there

in my original plan.

2

SUCCESS CRITERIA

1. Setting up the game
1.1. Setting up the game window

1.1.1. Mouse not to be used except for the ability to press the red “x” button to close the game.
1.1.2. Reasonable window size.
1.1.3. Press ESC anywhere to quit the program
1.1.4. BACKSPACE to go to the previous screen.

1.2. Planning out the various game screens and their order
1.2.1. Splash Screen

1.2.1.1. First screen of the game.
1.2.1.2. Background music
1.2.1.3. Main characters and name of the game clearly presented
1.2.1.4. Indicator on how to start the game.

1.2.2. Menu Page
1.2.2.1. Clear options to navigate throughout the game. “Start Game”, “Instructions”, “View

Highscores”, “Settings” and “Exit”.
1.2.2.2. If a user uses W (up), S (down) keys to go on a button, the button should illuminate

to indicate that that is the option the user is currently on.
1.2.2.3. RETURN key on an illuminated button should select it.
1.2.2.4. Different background music.

1.2.3. Settings Page
1.2.3.1. If RETURN is pressed on the ​Settings ​ button, display the ​Settings ​ page.
1.2.3.2. Display all options the user can change. Sound effects on/off, controller settings

(WASD to arrow keys), game speed (slow, medium or fast), screen annotation
on/off

1.2.4. High Score Page
1.2.4.1. If RETURN is pressed on the ​View High Scores ​ button, display the ​High Scores

page.
1.2.4.2. Display top 5 scores highest to lowest.
1.2.4.3. Rank, Score, Name (3 letters), Date (e.g 13/09/2020) subtitles.

1.2.5. Instructions Page
1.2.5.1. If RETURN is pressed on the ​Instructions ​ button, display the ​Instructions ​page
1.2.5.2. Navigation keys and game moves displayed as well as in-game controls.

2. Character Selection
2.1. If RETURN is pressed on the ​Start Game ​ option, display the Character ​ Select ​ page.
2.2. Main characters to choose from must be clearly shown.
2.3. Move an arrow up and down (using W and S) to select a character.
2.4. Different background music.

3. Game Logistics
3.1. 360 second timer. The user has 360 seconds to defeat 21 enemies to move on to the next level.¹
3.2. Every 15 seconds a new enemy appears.
3.3. 100 health points to begin with.
3.4. Enemies have 20 health points to begin with.
3.5. Enemies must always follow you.
3.6. All users' scores will be recorded and saved to a database.
3.7. Different sound effects for each character.

3

1. The user has 360 seconds to defeat 21 enemies to move on to the next level. 21 kills to move to the next level. Every 15 seconds a
character appears. Killing 21 characters with one character appearing every 15 seconds, requires 315 seconds. 360 - 315 gives the player
45 extra seconds to try to get 21 kills.

4. In-game Screen Layout
4.1. Once the character is chosen, display the ​level 1 background image​.
4.2. Display chosen character.
4.3. Timer on the top middle of the screen, health bar in the top left, kill count in the top right.

Special move bar underneath health bar. Level indicator under the timer.
4.4. Enemy’s health and special move bars on top of their heads.
4.5. Bins and boxes scattered throughout the game to be used as a projectile or to destroy.

5. Progressing in the game
5.1. Moves

5.1.1. Standing
5.1.2. Left and right movement
5.1.3. Punching
5.1.4. Kicking
5.1.5. Jumping
5.1.6. Blocking
5.1.7. Special Move

5.2. Interactions within the game
5.2.1. Landing a punch or kick on the enemy loses them 5 health points. Special move

on the enemy deducts 10 health points. Throwing an obstacle at the enemy
deducts 5 health points.

5.2.2. If an enemy lands a punch or kick, you lose 2 health points. Special move loses
you 6 health points.

5.2.3. Enemies cannot pick up obstacles.
5.2.4. If anyone blocks, no damage is deducted.
5.2.5. Every 10 health points decrease, the health bar will be updated to display the new

health.
5.3. Special Move

5.3.1. Special move bar with 5 segments. Landing a punch, a kick, blocking an enemy’s
attack must fill the special move bar by a segment.

5.3.2. Special move uses up all 5 segments.
5.3.3. Enemies’ special move bar has 4 segments. Landing a punch or a kick must fill the

special move bar by a segment.
5.4. Progressing onto the next level

5.4.1. If the user is successful in defeating the 21 enemies in the time given, then the
next level will begin. 5 levels in total.

5.4.2. The next wave of enemies will have 5 more health than the previous level and
deduct 2 more damage in all attacks. The time allowed for that level will increase
by 15 seconds.

5.4.3. If you complete all 5 levels, there will be an end credit and you will return to the
Menu ​ page.

5.5. Dying in the game
5.5.1. If the user is unsuccessful, then a ​GAME OVER​ message will display and return

the user back to the Menu screen.

4

Analysis

FEEDBACK FROM END-USERS

SYSTEM SETUP

To begin with, I had to make a decision regarding what software I would use to code my project. I had
“Atom” and “Visual Studio Code” downloaded as two potential text editors that I could use. I went for
Visual Studio Code as I felt the design of the software was more intuitive and I felt as though it had a
more interactive and accessible user interface due to the colour coding system in place.

IN-GAME TECHNICALITIES

My target audience includes anyone who likes playing video games. So, after an initial consultation and
an explanation of my game with an end-user, I received very valuable feedback. For example, I was
asked whether there would be the option to jump and kick at the same time; something which I had not
yet considered. Furthermore, the user asked me about the possibility of diagonal jumps; again something
which I hadn’t included in my first draft of the game. These are two key abilities I have decided to add to
my project after concluding my first consultation with an end-user.

In a subsequent conversation with a member of my target audience, they mentioned the use and value of
adding annotation of the entire screen when a new game starts. This could be very helpful for new
players who may not know what all the bars and numbers on the screen represent. This is also something
I have added to my plans.

Pertaining to high scores, I originally planned to let players choose a 5 letter name to save their score.
However, I couldn’t think of a way around two people having the same name. After some feedback with
an end-user, I have concluded that it would be better to have 3 letter long names. Furthermore, if two
users have the same name, then the higher score will override the previous score saved to that name,
otherwise, the previous score will remain. This is very similar to how arcade high scores work and will
consequently save a lot of memory. Moreover, it was suggested that it would be of use to incorporate a
date and time system for the high scores so that players know when the event took place. These are
some new ideas that I will append to my project.

In addition, one of my end users is left-handed and brought to my attention that using the WASD keys for
movement is quite uncomfortable and that most left-handed users prefer the arrow keys. Therefore, I
have instated an option in the setting screen to change the keys that correspond to the movement of your
character.

Another piece of feedback I received was to add the ability to change the speed of the game on the
settings screen. It seems that some more advanced players prefer a faster game speed, with the
characters and computer moving at a much quicker pace. Similarly, those playing the game for the first
time or those not used to this style of video games would prefer a slower setting for the movement for all
the sprites. This is a very intuitive idea and definitely something I will incorporate into my project.

5

(B3) ​After getting some end-users to test my game to the point where I had coded it, one user suggested
to include a rank column in my “Highscores” page as right now I only had “Name, Score, Date”. This
seemed like an obvious addition to include in my “Highscores”’ page.

I had an interesting discussion with an end-user regarding scores of players even if they die partway
through the game. We came to the conclusion that it would be quite important to record unsuccessful
attempts as otherwise (if no one is successful for a while), there will be no scores on the leaderboard -
which would be quite strange for a game. Therefore, this is something I shall investigate further and
implement into my project.

(B4) ​Originally, I had it so that all the punching and kicking buttons were in the middle of the keyboard.
This would then mean that no matter if you are using the WASD or arrow keys for movement, all the other
buttons will be the same distance on either option so it's fair to both left and right-handed players.
However, after some end-user feedback, it was suggested that this is not the right way to go about and
that I should just create two entirely separate key layouts for right and left-handed users. Therefore, I
changed my project so that if you use the WASD keys then, all the other moves will be on the right-hand
side of the keyboard to give your hands enough space and similarly if you use the arrow keys then, all the
other moves will be on the left-hand side of the keyboard.

(B5) ​A final run through of the keyboard layout made me make a crucial change. 5/5 users agreed that
instead of having the spacebar for jump and a random button for block, it makes a lot more sense to have
block as ​S ​or the ​Down Arrow​ key and jump as ​W​ or the ​Up Arrow​ key. This seems very logical as it just
reduces the amount of hand movement required to play the game.

(B6) ​Regarding special moves for the characters, I decided to reduce the number of special moves for the
characters from 2 to 1. This is because in most games there only seems to be one special move per
character and it makes more sense.

SPRITE SELECTION

I have chosen a total of 12 sprites for my project; 5 level backgrounds, 5 opponents and 2 main
characters. I found a website called “​The Spriters Resource​” that had all the sprites I was looking for. This
took place on the 22nd of June. I also found out that all the images from this site were allowed to be used
for educational purposes or to be used in games for pleasure, but not in games made for profit. Thus, with
the use of sprites from this website, I will not be monetising my project. [NOTE: level background is not
from the website but from ​google​]

After showing the original sprites I had chosen for the characters and opponents, I received a lot of
valuable feedback. One end-user pointed out the similarity between one of the two characters that you
can choose to fight with and one of the opponents. Furthermore, another end user proposed to me that I
should keep the style of all my sprites the same. For example, in my first draft; one sprite, in particular,
was much more animated than the others and stuck out from the rest in an unaesthetic way. Therefore, I
have changed the sprite for one of the main characters and the sprite for the animated opponent. This will
provide a much more professional and consistent user experience.

6

https://www.spriters-resource.com/
https://www.google.com/search?q=fighting+game+arena+background&tbm=isch&ved=2ahUKEwjsgLep06fqAhVE1eAKHRhgByoQ2-cCegQIABAA&oq=fighting+game+arena+background&gs_lcp=CgNpbWcQAzoECAAQHjoGCAAQCBAeUKQbWNgsYP0taABwAHgAgAE-iAGJBJIBAjExmAEAoAEBqgELZ3dzLXdpei1pbWc&sclient=img&ei=gTL6Xqy8M8SqgweYwJ3QAg&bih=766&biw=1440#imgrc=bwN2ZuYgDAjyTM

However, I still felt as though my characters were slightly odd together. Consequently, I found a group of
characters from a game called “King of Fighters” and will be using them because an end-user suggested
that this would work out much better as all the characters will be the same style and level of animation.
After viewing the level background image I chose for my project in the window I coded, I was quite
unsatisfied with the quality and resolution of the background. Consequently, I spent some more time
researching various backdrops that would fit the dimensions of my game window and be of sufficient
quality. In the end, I chose this backdrop (insert image). However, according to my original objectives, I
decided on having a 3D platform with a moving backdrop, therefore, when I edited this backdrop in
Powerpoint to see what three of them would look like side by side, I found the repetition of the big building
quite unaesthetic. I then proceeded to review the image I had chosen with an end-user and their feedback
suggested that the repetition of the big building wasn't a big deal and that they would not mind it in the
game.

GAME WINDOW

I went for a 720-pixel resolution for my backdrop. This is a better resolution in terms of quality than a
480-pixel background and most laptops are compatible with 720 pixels, so there is a very low chance of
crashing. Furthermore, after consultation with an end-user, it was suggested that a bigger size would
enhance their in-game experience and allow the detail of the game to shine through as well as the
playability of the project.

(B1) ​Furthermore, regarding the size of the window, I decided to decrease the height and width of the
game window from 1280 by 720 pixels to 600 by 380 pixels to make sure that all devices can run my
project without any lag. Consequently, I tested to see whether I had to manipulate the sizes of any of my
characters to fit the new screen dimensions and after some feedback from an end-user, the characters
seem to fit in the window quite well.

STYLISTIC FEEDBACK

For the different pages, I decided to use a website called “​Text Craft​” to find different fonts that would suit
the style of my game. I chose the “STONECRAFT” font for headers in my Menu pages and I chose
“ArcadePix” for smaller bodies of text.

(B2) ​Moreover, in relation to the general look and feel of the game, I analysed various fighting games
online and inspected their menu screens and loading pages. This gave me an idea of what my title screen
and general layout should look like. It became apparent that one key feature of these games is the display
of the main character(s) in an imposing stance in most, if not all, of the introductory screens. Furthermore,
I noticed a “top to bottom” list of all the options available for the user. These ideas are shown in the
images below:

7

https://textcraft.net/

I went on to implement these ideas here:

A user reported that the feel and authenticity of my game was true to that of similar fighting games he had
played before.

FLOWCHARTS AND CLASS DIAGRAMS

8

Implementation

Code 1

[​1​]

Python has a variety of modules and libraries that can be imported to allow users to enhance their code using in-built
functions. Pygame is a good example of this that allows users to code games in Python.

.init() ​is a method that initialises the pygame instance from the library to allow the class objects to be constructed to
build your game.

I applied the ​.set_mode ​method which is encapsulated inside the ​display ​class on the instance of pygame that I
initialised earlier and passed in the argument width and height as a tuple giving the dimensions in pixels. I then
assigned this to the instance object ​window​.

Furthermore, I then applied another method ​.set_cpation ​which passed in the title as an argument that will appear on
the top of the tab as ​“Game”. ​The ​.setcaption method is also encapsulated inside the ​display class and applied to
pygame.

Then I applied the method ​.load which allowed me to pass in and load the background image from my laptop. The
.load ​method is encapsulated inside the ​display ​class and consequently applied to pygame. This is then assigned to
the instance object ​background_image​.

Firstly, I set the boolean value to ​True and assigned it to the variable ​loop​. On line 11, I created a while loop that will
execute the instructions indented inside until the condition (the variable ​loop​) is set to false. Inside the while loop, I
have applied the ​.blit method to the instance object ​window and passed in two arguments; the image that I want to
be displayed and the dimensions of the window. Finally, on line 13, I called the ​.update ​method which is
encapsulated inside the ​display class and applied it to pygame. This constantly updates the ​blit method so that the
window is always being displayed.

pygame.quit() ​allows the user to press the close tab button to exit the programme.
(A1) ​Lesson 1 issues: Screen only popped up for a very short time then disappeared.

9

Code 1: Issue Solved ​(A2)

[​2​]

The previous code threw an error of the window appearing then disappearing instantly when the program ran. I
attempted to fix this using the code from line 14 to line 17.

On line 14, I call the ​.get() method (which took no arguments) on the event class and apply it to the instance of
pygame that I created. This gets all the different events that occur in pygame and I have assigned (stored) this
information to the variable ​events​.

On line 15, I have iterated through every ​event in all the different events in pygame (which I have stored in the
variable ​events ​as mentioned before). It is important to note that the word ​event which I have used in the iteration is
a temporary variable whose scope lies only within the ​for loop​.

On line 16, I have used a conditional statement. Once the computer starts to iterate through all the different events in
pygame and momentarily storing each one in the temporary variable ​event​, it will check whether the event is of the
type ​QUIT​. If the event is of the type ​QUIT​, then and only then will line 16 be executed. Otherwise, the computer will
proceed to the next iteration of the ​for loop​.

On line 16, if the condition in line 15 is met, then I assign the boolean value ​False to the global variable ​loop​. This
essentially breaks the entire ​while loop that I constructed on line 11. This is because the ​while loop was conditioned
to run so long as the variable ​loop was assigned the boolean value ​True​, however, on line 16, the opposite occurs.
Thus, the programme exits the ​while loop​.

This then fixed the error of the screen only showing for a very short time. This is due to the fact that we are now
saying that for any event that occurs under the instance ​pygame​, only exit or stop the programme if the event is of
the command ​QUIT​. Now, the screen is constantly being displayed until someone presses the exit button.

10

Code 2: Implementation of ESC button to exit game ​(A3)

[​3​]

Now that I was able to run and exit my programme with ease, I wanted to customise how the user would be able to
execute the process of exiting the game. I decided to use the ​Escape button to be used to exit the game (please
refer to success criteria 1.1.3). This is due to the ease, intuition and commonality of using this button for quitting
games and programmes. This was implemented using the code from line 18 to 21.

On line 18, if the user does not perform an event that has the type ​QUIT​, then the programme will check to see if the
user has used another method to trigger the exiting of the game. This is the route that the ​else ​statement provides to
allow the user to quit the game using the ​escape​ button.

On line 19, I called the ​.get_pressed() method (which took no arguments) on the ​key ​class in the instance of
pygame. This allowed me to access all the keys that could be used in making a game with pygame. I then assigned
this information to the variable ​keys​. It is important to note that the information inside the variable ​keys is stored as a
dictionary.

On line 20, I access the data structure (which is a dictionary/hash map) by giving the name of the dictionary and the
key that I want to find the value of. I then use an ​if statement to say that if the key pressed is ​K_ESCAPE then
continue. ​K_ESCAPE ​is just the key in the dictionary for the ​Escape ​button on your keyboard. Therefore, if this is
True​ and the ​Escape​ button was pressed, then the programme will continue to line 21.

On line 21, I do exactly what I did on line 16 and assign the boolean value ​False ​to the global variable ​loop as a way
of breaking out of the ​while loop I created on line 11. Now, my game can be exited using the ​Escape button on the
keyboard or by clicking the close button on the top of the tab.

11

Code 3: Implementation of frame rate to begin preparation for animation

[​4​]

After sorting out the basic functionality of the display window, I shifted my focus towards the animation aspect of my
project. I incorporated lines 8 and 13 into my program.

On line 8, I called the ​.Clock() ​(with no arguments) method on the ​time ​class on the instance of pygame. This simply
creates an object to allow the computer to track the time. I then assigned this information to the global variable ​clock​.

On line 13, I applied the ​.tick() ​method to the variable ​clock​. I passed in an argument using the number 27. This
ensures that the programme will never run at more than 27 frames per second. This seems like a reasonable frame
rate for my animations to run smoothly in my project.

12

Code 4: Introducing classes and encapsulation in my code

[​5​]

My next task was to clean up my code and encapsulate it into different areas to make it easier to read and
understand.

I defined the function ​createPygameWindow() on line 3 to include all my code for aspects of my game related to the
basic structure of the window.

For example, I defined on line 4 to make ​pygame a global variable. This was necessary as earlier on, I ran across
some problems as the programme gave an error saying that ​pygame ​had not been defined correctly. ​(A4)

[​6​]

13

To further my endeavour in encapsulating my code, I defined my first Class Object called ​GameComponents​. This is
to simply include the basic aspects of my project that are required for it to function properly.

For example, I have included the window size, I will be including all the different images for the backgrounds and
levels under this class as well as various other lines of code that are necessary for the foundation of my project.

Some other minor changes I made were on lines 19 and 20. In image 4, line 12, I use ​while loop where the variable
loop is assigned to the boolean value ​True​. However, in image 5, line 19, I used the code ​while
startGame.playGame​. This is because I encapsulated ​playGame ​as an attribute of the class ​gameComponents​.
This is so this attribute becomes locally defined within the class and so when I want to access this attribute outside
the scope of the class (globally), I have to use the object instance of the class to do so. In other words, I have to use
startGame.playGame​ to access it.

Code 5: Getting the first few screens of my game to run.

[​7​]

Next, I proceeded to load all the images that I was going to use for my Splash, Menu and Level 1 screens. For
example, you can see that I load the splash screen on line 9, the menu on line 10, the buttons for the menu on lines
10-16, the characters on lines 17-18, and the background image on line 19.

I applied the method ​.load which allowed me to pass in and load any image I specified from my laptop. The ​.load
method is encapsulated inside the ​display ​class and consequently applied to pygame. This is then assigned to the
instance object ​background_image ​or ​splash_image​ etc.

I attempted to make my code more efficient when loading the images for the various buttons used in the Menu.
Instead of saving all my buttons individually to different variables and loading them separately, I thought it would be
more effective to make a list of all the button names (line 11), then iterate through a range of the number of items in
this list (line 15), then at each iteration, write the code needed to load an image from the ​Menu ​folder on my laptop
and append the name of the button that I want to load using ​.format and using ​self.button_names[i] to append the
name of the button at that iteration. Finally, I needed to append this whole line into a new list called ​self.buttons​.
This was a much more effective and efficient method.

I also created the attribute ​screen_status for my ​GameComponents class (line 13) to be used to change what
screen the user is on. This will be further explained later on.

One final thing to bring to attention is that I change the window size from 1280 by 720 pixels (image 6, line 6) to 600
by 380 pixels (image 7, line 8). Please refer to ​(B1)​ in my ​Analysis ​section for further explanation.

14

Code 5: Getting the first few screens of my game to run (2)

[​8​]

After loading all the images I needed for my Splash, Menu and Level 1 screens, I needed to find a way to go from one
screen to another. According to my success criteria (1.2.1.4), there must be a clear indicator on the splash screen “on
how to start the game”. I have written on my splash screen, “Press Space to begin”. Therefore, I must code my
programme so that when the user presses the spacebar, he goes from the splash screen to the Menu screen.

Using the aforementioned ​screen_status ​variable, on line 59, I use the conditional ​if statement to say that if the
screen_status​ equals “splash” and the spacebar is pressed, then follow the code indented under the if statement.

Then on line 61, it says that if ​screen_status was indeed equivalent to “splash” and the spacebar was pressed, then
make ​screen_status​ equal to “menu” to signify that the user has now moved on to the ​Menu ​screen.

[​9​]

At the beginning when ​screen_status equalled “splash”, I called ​game.splashDisplay to display the splash screen.
However, when ​screen_status ​changed to “menu” using the code on line 61, this meant that the first if statement on
line 43 would be false and so the programme would test the next if statement which is on line 45 as it is an ​elif (else
if). This would result in the statement being True as ​screen_status does now equal “menu” so the ​menuDisplay()
method will be called displaying the menu screen. There would then be no need to test the final ​elif statement as the
condition has been met on line 45.

15

Code 5: Getting the first few screens of my game to run (3)

[​10​]

Now that the user can successfully go from the ​Splash Screen to the ​Menu Screen using the spacebar, my next
task was to code the workings of the buttons on the ​Menu Screen​.

[​11​]

As one of the ​buttons on my Menu page, I used an image
called ​glow.png which is an illuminating, glowing box. I
want to use this box to be in the foreground of whatever
option the user is currently on. So if the user is on the
instructions button on the ​Menu Screen​, then there will
be this glow behind it. Thus, I will successfully meet
success criteria number 1.2.2.2: If a user uses W (up), S
(down) keys to go on a button, the button should illuminate
to indicate that that is the option the user is currently on​.

16

By trial and error and placing the different buttons on the screen and seeing where they looked the best as well as
analysing various menu screens on other fighting games, I decided to start the glow at y position 115 as shown on
line 16 using the attribute ​yDetect​. ​(B2)

The x position of the glow will remain the same as all the buttons are in a vertical line about the centre of the page. As
the user has pressed the spacebar, ​screen_status ​is now “menu”, therefore the ​ELIF​ statement on line 62 is True.

Indented inside this ​ELIF statement, I use another ​IF ​statement to say that if the ​S ​key is pressed then execute some
more code. According to my success criteria (1.2.2.2), if the user presses the ​S ​key, the game should go DOWN.
Therefore, I need the illuminating glow to go down to the next button to signify to the user that he is on the option
below now. Therefore, using trial and error, I found that I should add 50 to ​yDetect ​(line 65).

On lines 66 and 67, I am saying that if ​yDetect ever gets bigger than 315, then make it equal to 315. In other words,
if the user is on the last button on the ​Menu Screen​, and he presses the ​S ​key, the illumination should not go down
the page by 50 as there is no button there, so it should stay at 315 which is the y-position for the last button.

Similarly, on lines 69-73, I have done the same thing but just if the user presses the ​W button which, according to the
success criteria, should be used for going UP.

I had two minor problems that occurred in this phase of my code. The first one can be seen in image ​8 on lines 65
and 66. I used ​self.yDetect ​instead of using ​game.yDetect​. ​(A5)​. I instantiated the ​GameComponents() ​class under
the variable name ​game​. ​yDetect is an attribute of the class ​GameComponents()​. Therefore, when I am accessing
this attribute outside the scope of the class (globally), I have to use the object instance of the class to access it, in
other words, I have to use ​game.yDetect​ and not ​self.yDetect​.

[​12​]

The second problem I had was that when I pressed the spacebar to go from the ​Splash Screen ​to the ​Menu Screen​,
it would go straight from the ​Splash Screen ​to the ​Level 1 Screen​. This is because the frame rate was originally at
27 (image 5, line 20) and so I slowed it down to 2 frames per second (image 10, line 60) for when the user pressed
the spacebar and similarly for the buttons, so that the game doesn't skip a button when the user presses ​S or ​W​, I
slowed the frame rate to 13 (image 10, line 64). This slower frame rate ensures that Python doesn't detect the
spacebar, ​S​ or ​W​ buttons multiple times when the user has only pressed it once. ​(A6)

17

Code 6: Condensing and making code more efficient (3)

[​13​]

Initially, my code was very jumbled and hard to read so I decided to take a stop here before I moved on to work on
the efficiency, presentation and condensation of my code. My first objective was to sort out all the images I was going
to use for my game. In the screenshot above, you can see that I sorted the images out in relation to the screen they
were for. For example, I had the high score page images from lines 22-25 and the settings page images from lines
27-32. However, I thought it would make more sense to separate the background images of each screen from the
buttons, subtitles and all the other images.

[​14​]

18

This is shown on lines 17-23 where I now had my background images and lines 25-39 where I had all my buttons and
other images. Furthermore, I worked on the efficiency of my code. In the previous screenshot, you can see that I
individually loaded each image for the Settings and High score screens. However, I decided to use a similar method
to Code 5 (1) Bullet point 4 where I condensed my code for the Menu images. Instead of saving all my buttons
individually to different variables and loading them separately, I thought it would be more effective to make a list of all
the button names for each respective screen (lines 31 and 36), then iterate through a range of the number of items in
each list (lines 33 and 38), then at each iteration, write the code needed to load an image from the ​Highscores or
Settings ​folder on my laptop and append the name of the button that I want to load using ​.format and using
self.button_names[i] to append the name of the button at that iteration. Finally, I needed to append this whole line
into a new list called ​self.buttons​. This was a much more effective and efficient method to load all the images for the
Highscores and Settings screen.

[​15​]

My next task was to not individually load all the background images. So using the same method as above, I iterated
and appended to create a much more efficient method to load all my background images.

[​16​]

One point I later realised was that I can simply use list comprehension in all 4 of these cases (for the background,
menu, high score and settings images). Therefore, on line 19 for example, I created the attribute ​self.bgimages and
used list comprehension to do the same job as the code on lines 19-22 in the screenshot before. This actually turned
out to be more efficient as I was no longer creating two attributes (as you can see on lines 19 and 20 in screenshot
15) but only one (screenshot 16 line 19) as I just passed in the list of all the names of the images instead of creating a
separate attribute for it.

19

Code 6: Condensing and making code more efficient

[​17​]

Lines 39 to 64 are dedicated to displaying the images and buttons of the various screens. In each case, I have
applied the ​.blit method to the instance object ​window and passed in two arguments; the image that I want to be
displayed and the position of the window.

I thought about a way to condense this piece of code, however I couldn't find enough areas of commonality to be able
to use a shorter, more efficient method. This is due to the fact that the x-coordinates of the images in each method
have no correlation between them.

However, this is not the case for the ​highdcoresDisplay method. On the High Score page, the subtitles are all on
one row. This means that the c-coordinates increment by a constant amount and their y-coordinates are already the
same. Therefore, I decided to make a more efficient piece of code for the ​highdcoresDisplay​ method.

[​18​]

20

After trial and error and determining at what x-coordinate my subtitles of “rank”, “name”, “score” and “date” would look
good on the page, I found that it should be at 130, 230, 330 and 430 respectively. Thus, on line 48 I assign the
integer value 30 to the local variable ​x​. Then on line 49, I iterate through an attribute of this class called
highscore_subtitles which has the images of all the subtitles stored. Then, as the x-coordinate of the first image I
want is 130, the value of x is updated to 130 and the first image at coordinates (130, 110) is displayed. A similar
process will happen for the second, third and fourth iterations.

(B3) ​The idea behind changing the code into this format was to increase efficiency as well as to create an easier way
to add an extra subtitle if needed. This was actually the case. Initially I just had the “name”, “score” and “date”
headers on my high Score page. Then after reviewing my code with an end-user, it was brought to my attention that I
needed a “rank” header as well. This is essential to a High Score page. Consequently, with this new code, it was very
easy to simply add the new subtitle image for “rank” into the attribute ​highscore_subtitles ​and then it would simply
display it.

Code 6: Condensing and making code more efficient (2)

[​19​]

[​20​]

21

Firstly, I need to explain what the attribute ​yDetect ​encompasses. If you look in image ​[17]​, the methods
settingsDisplay and ​menuDisplay have this attribute ​yDetect​. These two screens are the only screens in the game
(so far) with buttons or options for the user to choose. These buttons are displayed vertically on the screen with the
same amount of space between each button. According to my success criteria number 1.2.2.2, “If a user uses W
(up), S (down) keys to go on a button, the button should illuminate to indicate that that is the option the user is
currently on​.​” Therefore, for both my Settings and Menu page, I created an additional glow image that would surround
the button chosen by the user as an indicator. If the user pressed ​S (down), then this glow should go down to the next
button and ​W​ (up) should make the glow go up a button.

On line 67, I create a function for my illuminating indicator (the name ​callthis was just temporary and is changed later
on). Note how I have not passed in self as it is not a class method but just a function. On line 68, I use an ​IF
statement to see if the user has pressed the ​S ​button. If this is true, then the code will continue to line 69. On line 69,
I slow the frame rate of the game due to a similar problem that occurred earlier. Please refer to ​(A6) earlier in the
Implementation section under “Code 5: Getting the first few screens of my game to run (3)”

On line 70, I take ​y_coord away from ​yDetect as I want to decrease the y-coordinate of my illumination to simulate
the user going down a button. I initially have my attribute ​yDetect assigned to the integer value 115 (see image [13]
line 16). I have chosen this number through seeing at what y-coordinate will the first button look aesthetically pleasing
at. Thus, I concluded that the first button on the Settings and Menu page will be at y-coordinate 115 and so the first
illumination will be at 115. Then when the user presses ​S​, the illumination will go down to the next button ny
decreasing in y-position by a fixed value, ​y_coord​. If you look in image ​[20] lines 130-133, where I call this function, I
have set ​y_coord ​for both the Settings and Menu page to be 50 as each button on these pages are 50 y-coordinates
apart from each other.

Then lines 71 and 72 say that if ​yDetect becomes bigger than the ​end_point​, then make ​yDetect ​equal ​end_point.
As you can see again in image ​[20] lines 130-133 where I call this function, I have set the ​end_point for the Menu
page as 315 and 265 for the Settings page. This is simply because the Menu page has one more button than the
Settings page so the ​end_point will be 50 y-coordinates further down. Lines 71 and 72 are implemented to ensure
that if the user presses the ​S ​(down) button when he is already on the last button, the illumination should not go down
another 50 y-coordinates but should stay on the last button.

Then from lines 74-78 I have repeated the same process but for going up a button by pressing ​W​.

[21]

My next task was to condense the extremely inefficient code on Lines 80-90 (image ​[19]​). The main purpose of these
lines of code is to basically direct the user to the next screen. For example, If they press return at Y coordinate 115
then take them to the first level. It seemed quite intuitive to me to use a dictionary. Hence, I create a dictionary on line
70 called ​select_screens and set the keys at each index as the Y coordinate of the various buttons and the values
are set as the name of the screen at the respective Y coordinates. So, at index 0 of the dictionary the key is ​115 and
the value is ​level 1​ which is in accordance with what I had coded in the non-condensed version.

Then on line 71, I introduce a simple ​IF statement asking whether the user has pressed the ​RETURN button on their
keyboard. If so, then line 72 is executed.

22

screen_status is an attribute of the class instantiated under the name ​game ​that I use countless times in my code. If
I set it to a certain string such as the ones set as the values in the dictionary on line 70, then the program will blit the
respective screen. So changing this attribute is what will change what the user will see (see lines 127-133 image ​[20]
to see ​screen_status ​in action and using it to blit the respective screens). As you can see on line 72, I set
screen_status to call the dictionary using the key ​game.y_selector​. ​y_selector is also an attribute of the ​game
class and is simply set to the Y coordinate of the aforementioned in-game glow. Essentially this ​IF block is saying that
if the user presses ​RETURN then key search the dictionary at whatever Y coordinate the user is at and find the
corresponding value. Then assign this value to the attribute ​screen_status ​which will then blit the new screen.

The ​IF ​block on lines 73-74 says that if the value returned from the dictionary is ​exit then the class attribute
playGame ​will be set to boolean ​False​ causing the game to quit.

Code 7: Working on the Menu page buttons

[22] ^^

[23]

[24]

23

[25]

On line 67, I created the class method ​buttonSelectMenu​. I have previously explained the workings of lines 68-77
under “Code 6: Condensing and making code more efficient” under images ​[19] and ​[20]​. The only difference is that
in this new version, I have renamed the attribute ​y_detect to ​y_selectorMenu so that in the future I can also create a
y_selectorSettings​ for the y-coordinates of the buttons of the respective screens.

Liines 78-81, I actually implement the action of a button being chosen on the ​Menu ​screen. Line 78 starts with an ​if
statement saying that if the ​RETURN key on the keyboard is pressed then to follow the indented code. This fulfils
success criteria number 1.2.2.3 which says, pressing the “RETURN key on an illuminated button should select it.”

On line 79, I bring up this important ​screen_status attribute. As you can see in image ​[22] lines 159-169, depending
on what string name the attribute ​screen_status is assigned to, the respective method will be called to display that
screen. So on line 79, I assign a dictionary to the ​screen_status ​with the keys as the y-coordinates of the buttons
shown in image ​[23] and the values of the dictionary as string names that will be assigned to ​screen_status ​and in
turn, displaying the chosen screen.

This works because I index the dictionary with the class attribute ​y_selectorMenu which starts at 115 and has the
ability to assume all the y-coordinates of each of the buttons on the ​Menu ​screen. (This process is explained further
in “Code 6: Condensing and making code more efficient” under images ​[19] and ​[20]​” Therefore if say the integer ​115
is indexed into the dictionary, it will return the value ​“level 1”​. Consequently, the attribute ​screen_status will have
the string ​“level 1” assigned to it and so the ​levelDisplay ​method will be called displaying the first level of the game.
This is how the ​Menu​ screen option select feature works.

Finally, if ​y_selectorMenu ​equals 315, then 315 will be indexed into the dictionary and the value ​“exit” will be
returned and assigned to ​screen_status​. Then if this is the case, as laid out on line 80, the ​game class attribute
playGame ​will be assigned the boolean value ​False​, which in turn quits the program.

I call the ​buttonSelectMenu method in image ​[23] line 184-185. The workings of this have also been previously
explained in “Code 6: Condensing and making code more efficient” under images ​[19]​ and ​[20]​”

24

Code 7: Working on the button change for the Settings page

[26]

Once i had condensed the menu selection code using a dictionary, coding the first steps for the settings screen for
the button selection followed a similar route. I thought that it would also make sense to use a dictionary. However
there was a key difference with the settings screen in that if a user presses ​RETURN at a given Y coordinate, they
should not be taken to another screen but instead their option should change. For example if the user presses
RETURN​ at Y coordinate 115, it should change the ​Sound​ option from ​ON ​to ​OFF​.

Thus, on line 77, for every key in the dictionary, the value is ​settings​. This means that no matter what ​y_selector is,
screen_status ​will always be set to ​settings so only the ​settings screen will ever blit and so the screen will never
change. Now the only aspect of the ​settings​ screen left to code is the changing of the buttons.

[27]

I then went on to try this code, where I had an array as the value which I attempted to index with a 0 then when the
user presses ​RETURN at a given Y coordinate, it would index the array for that key with a 1 instead. This seemed to
work in theory, however, one button on the ​settings screen has 3 options and all the rest only have 2. This meant
that if the user presses the ​RETURN ​button 3 times on a button that only has 2 options, an ​index out of range ​error
will be thrown ​(A7)​.

[28]

25

[29]

To do ^^

26

Code 8: Animating Tizoc’s movement

[30]

On line 69 I create the class method ​standingAnimation and pass in the class ​game by value. I construct a similar
code on line 82 with the class method ​walkingAnimation​. I had 7 images for my standing animation and wanted the
character to move at a steady and slow pace. Therefore, I calculated that each image would be displayed for 5
counts. Hence on line 70, I have the conditional statement asking whether the count has reached 35 (7 images X 5).
If it has reached 35, i.e each image has been displayed for 5 counts, then the attribute ​standingCount ​is reset to 0
and all the images are displayed for a second time in a cycle indefinitely. On line 73, I ask whether the attribute facing
is ​“right” and if so, then all the right facing standing images are displayed else all the left ones. Finally, in each case,
if ​facing is ​“right” ​or “left”​, the attribute ​standingCount goes up by one. And as you can see, every time the count
goes up by one, the algorithm asks whether it is equal to 35 and will repeat this process till the count is equal to 35
and then reset it back to 0. An identical process is being carried out in the class method below. Hence, there is
significant repetition in my code, meaning that it is quite inefficient. This is how I improved and optimised my code:

(A8) I had a problem where when the user stops pressing the keyboard button ​d ​(right movement) or ​a (left
movement), then the character would display the entirety of its last cycle of walking images before it starts to display
its standing images. What should be the case is that as soon as the player stops pressing ​d or ​a​, i.e wanting the
character to stop walking, the walking images should stop being displayed immediately and the standing images
should proceed to display. In order to fix this problem, I implemented this code:

27

[31]

I added the code on lines 95 and 100 using the new parameter ​xVal​. I am fundamentally saying that the ​x_coord or
the x coordinate of the character should continue to change even after the user stops pressing the right and left
movement keys. So instead of the character having that awkward phase where it is standing but the walking
animation images are playing, it will simply just carry on in the direction it is facing for the duration of the last cycle of
its walking images and then come to a clean halt and start displaying the standing images. The parameter passed in
by value, ​xVal​, is set to being ​tizoc.velocity*game.gameSpeed for the walking animation to allow the character to
carry on walking until the cycle of its walking images are complete. However, for the ​standingAnimation class
method, the parameter passed in by value is set to the integer value ​0 as we want no change in the x coordinate
when the character is just standing.

28

[32]

My next task was to further condense the walking and standing animations. I combined both class methods into a
singular class method called ​characterAnimation​. There were a couple of areas of commonality between both class
methods which I could generalise and condense. For example, on lines 72-75, I create an attribute called
self.statusCount​ and make it equal to the walking and standing count. Furthermore, I pass in the “idleStatus” and
the “walkingStatus” by value form the ​mainProgram​ when I am calling the ​characterAnimation​ method for standing
and walking respectively. It is as simple as, when I want the character to perform all its standing images, I pass in
tizoc.characterAnimation(game, 0, tizoc.standingImagesLeft, tizoc.standingImagesRight, True, False) to tailor the
class method to standing and a similar idea for when I require the character to walk.

However, when getting all the standing images to show, there was a gap in the images where nothing showed. An
index out of range error was thrown. I traced the algorithm and rearranged the count += 1 to sort out the index issue.

Initially we had the count += 1 line before the
blitting of the character. However, this is clearly
problematic as it would undoubtedly lead to an
“index out of range error” as the count became
too large and so when we floor the count it is
indexing the images at an index which does not
exist. So swapping these two lines means that
first it will blit the character image then it will
increase the count and then the key point is that it
will check if the new count value equals the
conditional statement before blitting another
character image at said count index. Furthermore,
the use of “elif” instead of an “if” statement
caused the algorithm to only read some of the
lines of code, however, we want the algorithm to
check against all conditions, hence the use of “if”
was required.

[33]

29

[34]

This code was in my ​mainProgram and is used to call the character animation class methods in my ​Sprites file. Line
229 is a simple ​ELIF statement continuing on from a few ​ELIF statements before this asking essentially what screen
the game is on. So, if the ​screen_status class attribute is set to “​level 1​” then call the ​levelDisplay ​class method to
blit the first level.

Then the animation code is run. Line 231 asks whether the character ​Tizoc is standing completely still. I created
various different attributes of the ​Character ​class such as: ​is_idle​, ​is_walking etc. Basically just asking what state of
movement a given character is in. As you can see on line 231, I ask if ​tizoc.is_idle was True. ​tizoc is the
instantiation of my ​Tizoc class which inherits from my ​Character ​class. So if ​tizoc.is_idle is ​True then it calls the
characterAnimation​ method inside the ​Tizoc​ class with various parameters.

The first parameter used is ​game​. ​game is an instantiation of the ​GameComponents class which I created for all the
building blocks of my game. This includes the ​window attribute. Now since ​GameComponents ​or ​game was in my
mainProgram and Tizoc’s ​characterAnimation was in my ​Sprites ​file, I had to pass in ​game by value in order to
use the ​window.blit​ function with Tizoc.

The second parameter is velocity and since Tizoc is idle, he has 0 velocity. The third and fourth parameters are the
left and right images of a character which are again passed in by value. I will shortly explain why I have differentiated
them like this. Finally, the fifth parameter is ​idleStatus and the sixth walkingStatus​. As this ​IF block is concerning
Tizoc being idle, ​idleStatus​ is set as ​True​ and ​walkingStatus​ as ​False​.

However, I quickly realised adding more parameters for every move would be extremely inefficient as I would have to
add in ​jumpingStatus ​then ​blockingStatus and so on and pass them all in by value. I have explained under ()
where I moved these True and False boolean statements as they are crucial for the animation to work smoothly.
From lines 234-235, I repeat this process but for Tizoc if he is in a walking state.

Lines 237-245 is where I code the link between the keyboard and performing a certain move. The ​IF block on line 237
is for when the user presses ​d and the ​ELIF block below is for if the user presses ​a​. So, if the user presses ​d​, then I
want him to move in the right direction in accordance with my success criteria number 5.1.2. Hence, I logically set
is_idle to ​False ​and ​is_walking to ​True and I simply set the ​facing attribute of Tizoc to “​right​”. This ​facing attribute
is then used in character animation in an ​IF ​statement to determine whether to blit the left or right facing images. I
then repeat this code for when the user presses ​a​ but I set ​facing​ as “​left​” instead.

30

[35]

(A9) My method for calling the walking and idle (standing) images for Tizoc seemed to work. However, I missed out a
crucial point. When I added code for Tizoc’s blocking images, an index out of range error occurred. This is because I
was displaying the blocking and walking images at the same time. There was a point in my code where both
is_blocking and ​is_walking were ​True​. This then meant that both sets of left and right images for both blocking and
walking were being passed in. And since there were a different number of images corresponding to these moves, the
count used in ​characterAnimation became extremely jumbled and the maths used no longer worked (for more on
the maths, see the first paragraph under “Code 8: Working on Tizoc’s walking animation”)

[36]

31

[37]
This was my first attempt at solving the problem. As I knew it was the matter of the ​characterAnimation ​class
method being called multiple times with different parameters, I added some extra conditions to the ​IF statements on
lines 236 and 239. This was to ensure that the ​characterAnimation class method was only being called at one point
at any given time in Tizoc’s movement. However, this was not the way to go about this problem. If I only want one
characterAnimation​ class method to be called at one point, then there is a much simpler way of doing this.

[38]
My solution was to just use an ​IF statement and then all the conditional statements below will be ​ELIF​s. This meant
that the program will check one by one down the code to see if the conditional statement is satisfied. If the first ​IF
statement is not ​True​, then the code will check with the next ​ELIF statement then the next and so on and so on. This
was the most effective way to solve my index out of range problem.

32

Code 8: Animating Tizoc’s movement (Jumping)

[39]

(A10) I originally had a problem where randomly the character would disappear after he had performed a jump move.
This was because there was a moment in time where no state was True. In other words, there was a period in my
code where ​is_jumping and ​is_idle were False. This meant that no images were being displayed, hence the
disappearing character. To solve this problem, I added a statement in the else block in my code reiterating that
self.is_idle = True​. This did in fact work, however temporarily. This is because it eliminated that period in time where
no state was True, however, conversely, it created a period of time where ​is_jumping ​and ​is_idle were both True
together. This then resulted in an index out of range error as both jumping images and standing (idle) images were
being inputted into the class method causing an index out of range error. I then realised that to inhibit this error from
occurring, I just needed to add a statement resetting ​statusCount​ to 0 so that this collision doesn't occur.

Another issue I had was to do with not being able to move and jump at the same time. I realised that while in the air,
the character could move left and right. This meant that he was able to jump and move but not move and jump. To
solve this, I simply changed the order in which I placed my elif and if statements in my mainProgram.

33

, Inshallah, By Allah’s will

Test Table

Key
Purple Text ​= Success Criteria I have not yet completed

1. Setting up the game
1.1. Setting up the game window

1.2. Planning out the various game screens and their order
1.2.1. Splash Screen

34

Test
No.

Test SC
No.

SC (Success Criteria) Actual
Outcome
Pass/Fail?

Action- Any improvements
needed

1 Move and click the mouse to
see if any interference

occurs and press the “x”
button to see if that quits the

game.

1.1.1 Mouse not to be used except for the ability to press the red “x”
button to close the game

Pass

2 I chose a screen size of 600
by 380 pixels. So the test

was to see if it would load.

1.1.2 Reasonable window size Fail Yes, improvements needed -
please refer to the implementation

section under ​(A1) ​and ​(A2)

3 I chose a screen size of 600
by 380 pixels. So the test

was to see if it would load.

1.1.2 Reasonable window size Pass No, improvement not needed

4 See if the programme quits
when the ESC button is
pressed on any page.

1.1.3 Press ESC anywhere to quit the program Fail Yes, improvements needed -
please refer to the implementation

section under ​(A3)

5 See if the programme quits
when the ESC button is
pressed on any page.

1.1.3 Press ESC anywhere to quit the program Pass No, improvement not needed

6 1.1.4 BACKSPACE to go to the previous screen. Pass

1 Test to see when the code is
run if the ​Splash ​screen is
the first page that appears.

1.2.1.
1

First screen of the game Fail Yes, improvement needed - please
refer to the implementation section

under ​(A4)

2 Test to see when the code is
run if the ​Splash ​screen is
the first page that appears.

1.2.1.
1

First screen of the game Pass No, improvement not needed

3 1.2.1.
2

Background music

4 Test to see when the game
is run whether the main

characters and name of the
game appear clearly

1.2.1.
3

Main characters and name of the game clearly presented. Pass

1.2.2. Menu Page

1.2.3. Settings Page

1.2.4. High Score Page

1.2.5. Instructions Page

35

5 See if there’s a clear
instruction on how to

progress to the next screen.

1.2.1.
4

Indicator on how to start the game. Pass

1 See if it is clear to the user
what the different options on

the ​Menu​ page are.

1.2.2
.1

Clear options to navigate throughout the game. “Start Game”,
“Instructions”, “View Highscores”, “Settings” and “Exit”.

Pass

2 Test to see if W and S make
the illuminating indicator go

up and down.

1.2.2
.2

If a user uses W (up), S (down) keys to go on a button, the button
should illuminate to indicate that that is the option the user is currently

on.

Pass

3 Test to see if pressing
RETURN on an illuminated

button takes you to its
respective page.

1.2.2
.3

RETURN key on an illuminated button should select it. Pass

4 1.2.2
.4

Different background music.

1 Test to see if pressing
RETURN on the ​Settings
button takes you to the

Settings ​page.

1.2.3
.1

If RETURN is pressed on the ​Settings​ button, display the ​Settings
page.

Fail Yes, improvement needed - please
refer to the implementation section

under ​(A5) ​and​ (A6)

2 Test to see if pressing
RETURN on the ​Settings
button takes you to the

Settings ​page.

1.2.3
.1

If RETURN is pressed on the ​Settings​ button, display the ​Settings
page.

Pass No, improvement not needed

3 See if all the changeable
options are displayed on the
Settings​ page and that they

can actually be changed.

1.2.3
.2

Display all options the user can change. Sound effects on/off,
controller settings (WASD to arrow keys), game speed (slow, medium

or fast), screen annotation on/off.

Fail Yes, improvement needed - please
refer to the implementation section

under ​(A7)

4 See if all the changeable
options are displayed on the
Settings​ page and that they

can actually be changed.

1.2.3
.2

Display all options the user can change. Sound effects on/off,
controller settings (WASD to arrow keys), game speed (slow, medium

or fast), screen annotation on/off.

Pass No, improvement not needed

1 Test to see if pressing
RETURN on the ​View High
Scores ​button takes you to

the ​High Scores ​page.

1.2.4
.1

 If RETURN is pressed on the ​View High Scores​ button, display the
High Scores ​page.

Pass

2 1.2.4
.2

Display top 5 scores highest to lowest.

3 1.2.4
.3

Rank, Score, Name (3 letters), Date (e.g 13/09/2020) subtitles.

2. Character Selection

3. Game Logistics

4. In-game Screen Layout

36

1 Test to see if pressing
RETURN on the ​Instructions

button takes you to the
Instructions ​page.

1.2.5
.1

If RETURN is pressed on the ​Instructions​ button, display the
Instructions ​page.

Pass

2 See if the buttons for each
move and navigation are
displayed clearly on the

Instructions ​page.

1.2.5
.2

Navigation keys and game moves displayed as well as in-game
controls.

Pass

1 Test to see if pressing
RETURN on the ​Start Game

button takes you to the
Character Select ​page.

2.1 If RETURN is pressed on the ​Start Game​ option, display the ​Character
Select​ page.

Pass

2 See if the two main
characters are visually and
clearly represented on the

screen.

2.2 Main characters to choose from must be clearly shown. Pass

3 See if the arrow moves up
(using W) and down (using S)

to indicate what character
you are currently selecting.

2.3 Move an arrow up and down (using W and S) to select a character.

Pass

4 2.4 Different background music.

1 3.1 360 second timer. The user has 360 seconds to defeat 21 enemies to
move on to the next level.

2 3.2 Every 15 seconds a new enemy appears.

3 3.3 100 health points to begin with.
Enemies have 20 health points to begin with.

4 3.4 Enemies have 20 health points to begin with.

5 3.5 Enemies must always follow you.

6 3.6 All users' scores will be recorded and saved to a database.

7 3.7 Different sound effects for each character.

5. Progressing in the game

5.1. Moves

37

1 Test to see that when a
character is chosen, the

level 1 background image
loads.

4.1 Once the character is chosen, display the ​level 1 background image​. Pass

2 Test to see if the chosen
character displays on the

level 1 image​.

4.2 Display chosen character. Pass

3 4.3 Timer on the top middle of the screen, health bar in the top left, kill
count in the top right. Special move bar underneath health bar. Level

indicator under the timer.

4 4.4 Enemy’s health and special move bars on top of their heads.

5 See if the obstacles created
display on the screen and if
they can be picked up and

used by the characters.

4.5 Bins and boxes scattered throughout the game to be used as a
projectile or to destroy.

Fail Yes, improvement needed - please
refer to the implementation section

under ​(A13)

6 See if the obstacles created
display on the screen and if
they can be picked up and

used by the characters.

4.5 Bins and boxes scattered throughout the game to be used as a
projectile or to destroy.

Pass No, improvement not needed

1 See if the character
animates standing still

5.1.1 Standing Fail Yes, improvement needed - please
refer to the implementation section

under ​(A11)

2 See if the character
animates standing still

5.1.1 Standing Pass No, improvement not needed

3 See if the character
animates walking

5.1.2 Left and right movement Fail Yes, improvement needed - please
refer to the implementation section

under ​(A8)

4 See if the character
animates walking

5.1.2 Left and right movement Pass No, improvement not needed

5 See if the character
animates punching

5.1.3 Punching Pass

6 See if the character
animates kicking

5.1.4 Kicking Pass

7 See if the character
animates jumping

5.1.5 Jumping Fail Yes, improvement needed - please
refer to the implementation section

under ​(A10)

8 See if the character
animates jumping

5.1.5 Jumping Pass No, improvement not needed

9 See if the character
animates blocking

5.1.6 Blocking Fail Yes, improvement needed - please
refer to the implementation section

under ​(A9)

5.2. Interactions within the game

5.3. Special Move

5.4. Progressing onto the next level

5.5. Dying in the game

38

10 See if the character
animates blocking

5.1.6 Blocking Pass No, improvement not needed

11 See if the character
animates his special move

5.1.7 Special Move Yes, improvement needed - please
refer to the implementation section

under ​(A12)

12 See if the character
animates his special move

5.1.7 Special Move Pass No, improvement not needed

1 5.2.1 Landing a punch or kick on the enemy loses them 5 health points.
Special move on the enemy deducts 10 health points. Throwing an

obstacle at the enemy deducts 5 health points.

2 5.2.
2

If an enemy lands a punch or kick, you lose 2 health points. Special
move loses you 6 health points.

3 5.2.
3

Enemies cannot pick up obstacles.

4 5.2.
4

If anyone blocks, no damage is deducted.

5 5.2.
5

Every 10 health points decrease, the health bar will be updated to
display the new health.

1 5.3.1 Special move bar with 5 segments. Landing a punch, a kick, blocking
an enemy’s attack must fill the special move bar by a segment.

2 5.3.
2

Special move uses up all 5 segments.

3 5.3.
3

Enemies’ special move bar has 4 segments. Landing a punch or a kick
must fill the special move bar by a segment.

1 5.4.1

If the user is successful in defeating the 21 enemies in the time given,
then the next level will begin. 5 levels in total.

2 5.4.
2

The next wave of enemies will have 5 more health than the previous
level and deduct 2 more damage in all attacks. The time allowed for

that level will increase by 15 seconds.

3 5.4.
3

If you complete all 5 levels, there will be an end credit and you will
return to the ​Menu ​ page.

AQA A-LEVEL COMPUTER SCIENCE COURSEWORK:
ANCIENT COMBAT ​Alhamdulilah

Zain Mobarik
13 CS1

39

1 5.5.1 If the user is unsuccessful, then a ​GAME OVER​ message will display
and return the user back to the Menu screen.

